D. QUALITY ASSURANCE

D1. Define Quality in Manufacturing and Explain Importance

D1.1. Understand goals for quality application.

Performance Objective: After clarifying mission statements, the student will be able to identify a variety of goals that need to be achieved and give reasons why the proposed process plan should enable the goals to be achieved.

D1.2. Contrast Quality In manufacturing systems with other manufacturing quality control methods.

Performance Objective: After studying different manufacturing systems, the student will be able to compare and contrast at least eight differences between Quality In manufacturing and other approaches to manufacturing.

MANUFACTURING DIFFERENCES		
QUALITY IN VS OTHER QUALITY CONTROL		
Continuous process analysis	End product inspection	
Statistical Process Control	Rework, scrap, waste	
(SPC)		
Employee empowerment	Authority and decisions	
	top-down	
Customer-in design and	Customer complaints	
development		
Just-in-time delivery	Warehousing	
Problem-solving process	Job/task description	
Cross-functional teams	Supervisor/employee	
	relationship	
Build partnerships	Work in isolation	
Use employee knowledge and	Management decisions	
creativity		
Focused employee training		

D1.3. Justify the use of a Quality In control method.

Performance Objective: After discussing the differences between "Quality In" and other manufacturing systems, the student will be able to give at least six reasons for choosing "Quality In" control methods.

BENEFITS OF QUALITY IN CONTROL METHOD		
Saving from reduction of	Better supplier communications	
rework, scrap, and waste	Just-in-time delivery	
Employees inspect own work	Better customer responsiveness	
Eliminate cost of inspectors	Front-line responsibility	
Better-trained employees		

D1.4. Identify influence of a Quality In manufacturing system on specific manufacturing processes.

Performance Objective: Given a sample product and related manufacturing processes, the student will be able to analyze the system, break it down into essential processes, and state how the principles of "Quality In" manufacturing can be applied to each.

D2. Understand Concept of How Quality can Improve Profit

D2.1. Explain how manufacturing costs are determined.

Performance Objective: The student will be able to list at least twelve factors that influence the cost of manufacturing.

MANUFACTURING COST FACTORS			
Materials	Heating, lighting, ventilation		
Labor	Planning		
Tooling	Inspection		
Capital assets	Design		
buildings and equipment	Engineering		
Consumable assets	Medical/dental coverage		
Management	Workman compensation		
Training	Other insurance		
Legal counsel	Regulatory compliance		
Research and development	Taxes		

D2.2. Explain how profit is generated.

- **Performance Objective:** After studying the basic business process and given an income and expense statement, the student will be able to calculate the net profits of a hypothetical company.
- **Performance Objective:** The student will be able to identify the major factors that affect profit in a manufacturing company.

D2.3. Explain the effects of quality on profit.

Performance Objective: Accepting that profits are the result of sales minus costs, the student will be able to state how "Quality in" can diminish costs, increase customer satisfaction, and, therefore, increase profits.

Effects of Quality		
Customer satisfaction Material costs diminish		
Customer responsiveness Labor costs diminish		
Business Meet or exceed customers'		
reputation/integrity expectations		

D3. Apply Principles and Tools of Continuous Quality Improvement

D3.1. Identify the effects of quality improvement programs.

Performance Objective: After studying the principles and effects of various quality improvement programs (CQI, TQM, TQC, Operations Excellence), the student will be able to state how these effects may be observed in a manufacturing process.

QUALITY IMPROVEMENT PROGRAM EFFECTS		
Customer responsiveness	Root-cause solutions	
Process analysis and	Cost savings from	
improvement; maintain or	Waste elimination	
create competitive edge	Rework elimination	
	Excessive scrap elimination	
Inspect-in quality	Pride in workmanship	
Create hard data - not	Generate vertical and	
opinions	horizontal communications	
Utilize employees' knowledge	Cross-functional teams	
and skills		
Generate creative thinking	Problem-solving process	
	applied	

D3.2. Demonstrate the ability to apply continuous quality improvement techniques to manufacturing processes.

Performance Objective: Working on a quality improvement team, given problem-solving and continuous quality improvement tools, and using student-manufactured parts, the student(s) will be able to identify areas of possible waste, identify data-gathering points, record variance in the parts, and use problem-solving tools to suggest at least five possible improvements.

	PROBLEM-SOLVING TOOLS				
1.	Identify problem	6.	Select best tentative		
	situation		solution		
2.	Gather data	7.	Test selected solution		
3.	Define problem	8.	Evaluate test data		
4.	Identify possible causes	9.	Implement solution in the		
			process		
5.	Identify hypotheses				
	(possible solutions)				

DATA ANALYSIS/PRESENTATION TOOLS			
Process flowchart	Histograms		
Control charts	Scatter diagram	Cause and effect diagram	
Loss function analysis		Fishbone Lotus diagram	

D3.3. Integrate improvement processes.

Performance Objective: Given the ability to flowchart a process, the student will be able to gather data, chart this process daily, and suggest and implement improvements on a continuous basis.

D4. Understand and Apply Statistical Process Control (SPC) to Monitor Production Process

D4.1. Define SPC

Performance Objective: After studying basic Statistical Process Control principles and problem-solving tools, the student will be able to state the purpose of SPC and discuss seven different statistical tools.

BASIC STATISTICAL CONCEPTS AND TOOLS		
Sampling and populations	Control charts such as	
Average, median, and mean	Histograms	
Range, standard deviation	Scatter plots	
Design of experiments	Variations in the process	
	capability	
Variable factors	Standard error	
Suboptimization	Replication	
Root cause	Control limits	
Regression	Common cause	

D4.2. Identify the relationship between SPC steps and specific production processes.

Performance Objective: Given the basic steps in applying Statistic Process Control and a flowchart of a production process for a particular part, the student will be able to discuss how the SPC steps relate to the production process.

SPC PROBLEM-SOLVING STEPS		
1. Identify potential problems	5. Select most promising	
by:	hypothesis	
1.1 Customer interviews	6. Implement a test	
(internal and external)		
1.2 Flowchart analysis	7. Analyze test results	
2. Gather data	8. Implement results in	
	the system	
3. Analyze data	9. Monitor the	
	implementation	
4. Generate tentative	10. Maintain an on-going	
hypotheses	evaluation process	

D4.3. Apply SPC to specific production processes.

Performance Objective: Using blueprints/customer specifications, available measurement tools, and sample parts from a production process, the student will be able to write an inspection plan to identify variance in the process and establish control limits.

D5. Evaluate Data to Monitor Production Processes to Customer Satisfaction

D5.1. Analyze production specific processes.

Performance Objective: Given customer specifications and a sample manufacturing process composed of at least ten steps, the student will be able to generate a flowchart of the process, identify areas or steps that are nonvalue added, and identify process steps where data should be gathered for problem clarification.

D5.2. Analyze and interpret test data for compliance to specifications.

Performance Objective: Given customer part specifications, technical drawings, process inspection data, and sample product, the student will be able to analyze and interpret the data, determine a need, and give reasons for a change in the process in a 5 to 10 minute oral presentation.

D5.3. Correct production process (if indicated by analysis of the data).

Performance Objective: Using the analysis and interpretation of data generated with SPC tools, the student will be able to generate hypotheses that have the potential to identify and eliminate the root cause of the problem and implement changes.

D5.4. Monitor process improvement.

Performance Objective: Given successful test data, necessary tools, and instructions for process improvement, the student will be able to implement the improvement changes and to demonstrate assurance that the process is maintained within the improvement requirements.

D6. Analyze Consumer Problems Caused by Manufacturing and Recommend Solution

D6.1. Identify customer problems.

Performance Objective: Using a variety of communication tools and a systematic analysis of the data gathered, the student will be able to recommend a solution to address the customer's problem.

CUSTOMER COMMUNICATION TOOLS		
Customer design-in Specifications		
Interviews	Checklists	
Surveys	Questionnaires	

CUSTOMER SATISFACTION ANALYSIS			
1.	Identify customer needs	6.	Prototype analysis
	and expectations		
2.	Clarify needs and	7.	Analyze data/performance
	expectations		
3.	Clarify	8.	Determine relative
	standards/specifications		importance of features
4.	Collect data	9.	Evaluate and improve
			effectiveness
5.	Identify roles and	10.	Follow-up
	responsibilities		

D6.2. Classify customer problems.

Performance Objective: Given an array of 50 customer complaints regarding a particular product, the student will be able to use data analysis presentation tools to categorize and display the findings.

D6.3. Determine causes of the problem.

Performance Objective: Using data gathered from customer surveys and basic statistical processes and tools, the student will be able to use a variety of data presentation tools to isolate root causes.

DATA ANALYSIS/PRESENTATION TOOLS			
Process flowchart Pareto analysis Histograms/bar char			
Run charts	Scatter diagram	Cause and effect	
		diagram	
Control charts; loss		Fishbone chart	
function analysis		Lotus diagram	

D6.4. Apply problem-solving skills and tools.

Performance Objective: Given the basic steps in the problemsolving process and a flowchart/analysis of a production process, the student will be able to apply problem-solving skills and tools to identify the possible problems and suggest tentative solutions.

PROBLEM-SOLVING SKILLS AND TOOLS			
1.	Identify problem	6.	Select best tentative
	situation		solution
2.	Gather data	7.	Test selected solution
3.	Define problem	8.	Evaluate test data
4.	Identify possible causes	9.	Implement solution in the
			process
5.	Identify hypotheses		
	(possible solutions)		

D6.5. Recommend possible solutions.

Performance Objective: Having successfully completed a problem-solving process that generated a variety of possible solutions, the student will be able to analyze the different potential solutions and recommend the one most likely to succeed.

COST VARIABLE IN SUCCE	SSFUL SOLUTIONS
Technology	Time to complete
Man power	Management support
Capital resources	Return on investment
Customer priorities/satisfaction	

D7. Establish Methods, Plans, and Procedures to Maintain Quality

D7.1. Develop a plan utilizing a selected quality control system.

Performance Objective: After studying quality control systems, the student will be able to outline and discuss a plan to achieve continuous quality improvement.

ELEMENTS OF A QUALITY IMPROVEMENT PLAN				
Internal shared mission and	Reward implementation			
vision				
Teamwork	Customer-in			
Leadership	SPC			
Reward customer satisfaction	Training in all of these areas			
Problem-solving processes	Performance assessment based on			
(CQM, TQM, etc.)	these areas			
Current technology				