I1. Define Product and Process Control and Explain the Importance of Each

I1.1. List a variety of process control applications.

Performance Objective: Given an overview of both the human and mechanical dimensions of the manufacturing process and the need to continuously improve and to control these, the student will be able to list a variety of applications, tools, and principles that can improve the process control.

PROCESS CONTROL APPLICATIONS		
Supplier partnerships	Quality improvement principles	
Human dimension (teamwork)	Flowcharts/value added	
Customer-in design	Statistical Process Control	
Design/build teams	Statistical analysis	
Labor agreements	Control charts	
Employee training	Setting control limits	
Master scheduling	Computer Aided Process Planning	
Time lines/milestones	Computer-aided operations	
	Hardware variability control (HVC)	

I1.2. Describe the types of computer-aided process planning systems.

Performance Objective: After studying the use of computers in process planning, the student will be able to identify and describe the basic characteristics of four computer-aided systems and their use in process planning.

COMPUTER PROCESS	PLANNING APPLICATIONS
Computer-aided design (CAD)	Computer-aided manufacturing (CAM)
Computer-aided facilities layout	Computer-aided process planning (CAPP)
Parts Group Technology (GT)	

I1.3. Identify operations and subsystems involved in an automated process planning system.

Performance Objective: Given a manufacturing or production process plan, the student will be able to identify the operations and subsystems that can be automated and controlled with computer applications.

PROCESS PLANNING INCLUDES:		
Raw material retrieval and	Sequence of operations	
handling		
Initial inspection	Timing of operations	
Production	Cleaning	
Type of operations	Assembly	
machinery, tooling, fixtures		
Number of operations	Final inspection	

I1.4. Prepare and distribute production plans.

Performance Objective: Given a product and the basic elements of a production plan, the student will be able to prepare a production plan that is 90% accurate in content and time sequence projections when compared with a benchmark model plan.

PRODUCTION PLAN BASIC ELEMENTS			
Production order Batch sizes Product variance			
Process planning	Production	Timing of	
operations operations		operations	
Assembly sequence Milestones charts Delivery dates		Delivery dates	

I1.5. Summarize production plans.

Performance Objective: Given a production plan, the student will be able to summarize the plan using a review of the basic elements, their sequence, and timing.

I2. Apply Statistical Techniques to Monitor and Improve Processes

I2.1. Interpret statistical forecasting systems.

Performance Objective: Using a monthly statistical analysis, production data for the past six months, and production goals for the next six months, the student will be able to forecast needs and changes to meet the new production goals.

I2.2. Review master schedule regularly.

Performance Objective: Given a master schedule for a sixmonth production project, related timelines, and milestone charts, the student will be able to review these and provide a written status report for the first two months.

I2.3. Collect and analyze information to determine and improve work processes.

Performance Objective: After studying the variables that can influence product quality and materials handling, and given a routine process, and the necessary measurement instruments, the student will be able to design a problem-solving study and generate related flowcharts, control charts, and make improvement recommendations to a process/quality improvement team.

MATERIAL AND PROCESS	VARIABLES (Data Sources)
Tool, mold, and die wear	Machine conditions and
	maintenance
Lubricants and metalworking	Environmental conditions on
fluids	people and machines
Lead times	Operator skills - fatigue,
	attention

MATERIAL HANDLING PROCESS			
1.	From supplier to storage	4.	From machine to assembly
2.	From storage to machine	5.	From assembly to inventory
3.	From machine to machine	6.	From inventory to
			transportation

BASIC ELE	MENTS OF STATISTI	ICAL QUALITY CONTROL
Sample size	Distribution	Lot size
Random sampling	Population	Frequency distribution

	ELEMENTS	OF STATIS	TICAI	L PROCESS CONTROL
1.	Control charts		3.	Capability of
				manufacturing. process
2.	Setting control	limits	4.	Characteristic of machines

I3. Explain Just-in-Time Inventory

I3.1. Explain the advantages and disadvantages of just-in-time inventory.

Performance Objective: After studying the history and purpose of Just-In-Time Production, the student will be able to discuss how JIT Inventory applies to the total production process and state the advantages and disadvantages of a JIT system.

JIT PRODUCTION			
1.	materials arrive JIT for	3.	Subassemblies arrive JIT
	use		for product assemble
2.	parts arrive JIT for	4.	Product arrives JIT for
	subassembly		sales

JUST-IN-TIME INVENTORY		
Advantages	Disadvantages	
Cut inventory warehouse costs	Poor implementation/line	
	stopper	
Quick discovery of raw	Defects of previous	
materials defects	operation/materials stops	
	process	
Quick discovery of product	Vendor can stop production	
defects		
Low scrap costs and reduced		
inspection and rework		
Supplier/customer teamwork		
Improved quality		

I4. Explain Factors that Affect Work in Progress

I4.1. Explain the factors that affect work in progress.

Performance Objective: The student will be able to list and discuss at least ten factors that can affect the work in progress.

MATERIAL AND PROCESS VARIABLES	
Inventory	Setup
Run time	Shop configuration
Training - learning curve	Que
Tool, mold, and die wear	Machine conditions and
	maintenance
Lubricants and metalworking	Environmental conditions on
fluids	people and machines
Various lead time	Operator skills - fatigue,
considerations	attention
Illness and absenteeism	Weather
Inspection	

I5. Design a Flow Diagram for Producing a Product

I5.1. List the steps involved to bring a product from the design stage to production.

Performance Objective: Given the elements of the manufacturing process and a flowchart symbols template, the student will be able to draw a flow diagram representing the process of bringing a product from design to delivery with 95% accuracy as compared to a benchmark model.

ELEMENTS OF TH	E MANUFACTURING PROCESS
Suppliers	Assembly
Materials acquisition	Delivery
Tooling	Labor and human resources
Planning	Management
Inspection	Training
Design	Units in a production run
Engineering	Duration of the run
Fabrication	Customer variations in the run
Customer input	Vendor input

I5.2. Create a project plan.

Performance Objective: Given the concept of valueadded/nonvalue-added activities, a detailed flow diagram, and working on a quality improvement team, the student will be able to create a project plan proposal to study one part of the process flow and present it to the team.

I6. Define Roles of Designers and Engineers in Development of a Product

I6.1. Identify the responsibilities of a designer, engineer, and technician and their individual roles in developing a product.

Performance Objective: After studying the roles and responsibilities of designers, engineers, and technicians, the student will be able to state a) five responsibilities for each, b) how they contribute to a product's development, and c) why they must communicate with each other.

ROLE OF DESIGNER	ROLE OF ENGINEER	ROLE OF TECHNICIAN
Design for:	Apply theories:	Test and verify:
Customer needs	Chemistry	Parts
Manufacturing	Physics	Fits
Process	Electronic	Assembly
limitations	metallurgy	Serviceability
Machinery	То:	Safety monitoring
characteristics	Materials	
Material	Parts design	Hazardous materials
characteristics		handling
Assembly	Parts assembly	Emergency response
		teams
Serviceability	Product	Industrial hygiene
	performance	monitoring
Human use		

I6.2. Describe how designers and engineers can interact with others via computer to develop products.

Performance Objective: After studying Computer-Aided Design programs and Local Area Network (LAN), the student will be able to describe how customers, designers, engineers, technicians, and machinists can electronically interact to develop a product.

I7. Explain the Importance of Configuration Control

I7.1. Utilize the most current revision documents.

Performance Objective: Given a revision process for technical drawings and required changes in product and process configurations, the student will be able to prepare a production plan that accommodates all revisions and changes.

18. List Major Factors in Process Planning

I8.1. Develop a process plan.

Performance Objective: Given a part, a list of machines and skilled workers, the student will be able to develop an effective process plan identifying the major factors of the process as compared to a benchmark model.

GENERA	L PROCESS PLANNING EL	EMENTS INCLUDE
Production	Fixture	Sequence of operations
Tooling	Machinery	Assembly

PROCESS PLANNING INCLUDES	
Facilities design	Number of operations
Lead time and setup	Sequence of operations
Raw material retrieval	Timing of operations
Initial inspection	Cleaning
Production (including SPC)	Assembly
Type of operations machinery,	Final test
tooling, fixtures	

18.2. Determine line and work station setup.

Performance Objective: After studying different line and workstation setups incorporating different degrees of automation and computerization, and given a production need and particular kinds of equipment, the student will be able to determine the shop layout, line configuration, and workstation setup to produce the product.

LINE SETUP	
Traditional line setup	Cellular setup
Less automated	More automated and computerized
Same machines grouped by	Difference machines with
same functions	different functions and setup
	configurations
Straight production line	Cells (group)layout can be L-
layout (transfer line	shaped, U-shaped, loop shaped,
system)	or straight

	AUTOMATION FACTORS
1.	Raw material loaded and/or unloaded at workstation
2.	Work pieces loaded and/or unloaded at workstation
3.	Tool changing at workstation
4.	Movement of tools and work pieces between workstations
5.	Scheduling and control total cell operations

18.3. Obtain and store materials needed to ensure continuity of workflow.

Performance Objective: Given a product, a production process, routing sheets, and a master schedule, the student will be able to identify raw material needs and design a materials handling process flow, including time sequences, that ensures continuity of workflow with 90% accuracy when compared to a benchmark model.

MATERIAL HANDLING PROCESS			
1.	From supplier to storage	4. From machine to assembly	
2.	From storage to machine	5. From assembly to inventory	Y
3.	From machine to machine	6. From inventory to	
		transportation	

18.4. Explain bill of materials to include purchasing and resources.

Performance Objective: Given a production process, a production rate, and using JIT inventory, the student will be able to fill out a bill of materials to identify resources and purchases to ensure a continuous flow of the production process with a 90% accuracy when compared to a benchmark master schedule model.

19. Understand Design for Producibility Concept

19.1. Identify some of the factors that should be considered when designing products and processes.

Performance Objective: Given an assignment to design a product, the student will be able to identify at least ten factors that must be considered to assure ease of manufacturing, minimum production costs, and meet or exceed customers' criteria.

FACTORS INFLUENCING PRODUCIBILITY		
Knowledge of material quality	Knowledge of operator	
	skills	
Knowledge of machine	Knowledge of automation	
capability		
Cost-effective materials and	Fewest number of parts	
availability		
Simplest parts design	Fewest types of materials	
Simplest assembly design	Easiest inspection	
Simplest maintenance process	Simplest tools and dies	
Simplest serviceability		
(customer)		